organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Z)-3-[1-(4-Methoxyanilino)ethylidene]-4,5-dihydrofuran-2(3H)-one

Li-Ping Zhang,^a* Cai-Hua Ni^a and Zhan-Hui Zhang^b

^aSchool of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China, and ^bSchool of Chemistry and Materials Science, Hebei Normal University, 113 Yuhua Road, Shijiazhuang 050000, Hebei, People's Republic of China Correspondence e-mail: zhangliping76518@163.com.cn

Received 28 May 2008; accepted 30 May 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.064; wR factor = 0.141; data-to-parameter ratio = 13.1.

In the title compound, $C_{13}H_{15}NO_3$, the dihydrofuranone ring is planar to within 0.012 (4) Å and it forms a dihedral angle of $42.8 (2)^{\circ}$ with the benzene ring. The aminoethylidene group is coplanar with the dihydrofuranone ring. The methoxy group is slightly twisted away from the benzene ring. An intramolecular N-H···O hydrogen bond, generating an S(6) ring, is observed. In the crystal structure, the molecules exist as C-H···O hydrogen-bonded dimers.

Related literature

For general background, see: Bartoli et al. (1994); Cimarelli & Palmieri (1996); Cimarelli et al. (1994); Elassar & El-Khair (2003); Greenhill (1977); Lubell et al. (1991); Michael et al. (1999); Negri et al. (2004); Reddy et al. (2005); Zhang et al. (2006).

Experimental

Crystal data

C13H15NO3 $M_r = 233.26$ Orthorhombic, Pbca a = 12.562 (9) Å b = 7.568 (5) Åc = 24.531 (18) Å

0.26 \times 0.20 \times 0.10 mm

Data collection

Bruker SMART CCD area-detector	8990 measured reflections
diffractometer	2051 independent reflections
Absorption correction: multi-scan	1409 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.051$
$T_{\rm min} = 0.963, T_{\rm max} = 0.990$	int
iiiii / iiiax	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.064$	156 parameters
$wR(F^2) = 0.140$	H-atom parameters constrained
S = 1.20	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
2051 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···O2	0.86	2.13	2.762 (4)	130
$C6\!-\!H6\!\cdot\cdot\!\cdot\!O2^i$	0.93	2.53	3.405 (4)	158

Symmetry code: (i) -x + 1, -y + 1, -z.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from Jiangnan University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2605).

References

- Bartoli, G., Cimarelli, C., Marcantoni, E., Palmieri, G. & Petrini, M. (1994). J. Org. Chem. 59, 5328-5335.
- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cimarelli, C. & Palmieri, G. (1996). J. Org. Chem. 61, 5557-5563.
- Cimarelli, C., Palmieri, G. & Bartoli, G. (1994). Tetrahedron Asymmetry, 5, 1455-1458.
- Elassar, A.-Z. A. & El-Khair, A. A. (2003). Tetrahedron, 59, 8463-8480.
- Greenhill, J. V. (1977). Chem. Soc. Rev. 6, 277-294.
- Lubell, W. D., Kitamura, M. & Noyori, R. (1991). Tetrahedron Asymmetry, 2, 543-554.
- Michael, J. P., De Koning, C. B., Gravestock, D., Hosken, G. D. & Howard, A. S. (1999). Pure Appl. Chem. 71, 979-988.
- Negri, G., Kascheres, C. & Kascheres, A. J. (2004). J. Heterocycl. Chem. 41, 461-491.
- Reddy, G. J., Latha, D., Thirupathaiah, C. & Rao, K. S. (2005). Tetrahedron Lett. 46, 301-302.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhang, Z. H., Yin, L. & Wang, Y. M. (2006). Adv. Synth. Catal. 348, 184-190.

supplementary materials

Acta Cryst. (2008). E64, o1328 [doi:10.1107/S1600536808016504]

(Z)-3-[1-(4-Methoxyanilino)ethylidene]-4,5-dihydrofuran-2(3H)-one

L.-P. Zhang, C.-H. Ni and Z.-H. Zhang

Comment

 β -Enamino esters are a highly versatile class of intermediates for the synthesis of heterocycles (Reddy *et al.*, 2005; Negri *et al.*, 2004) and biologically active compounds, such as β -enamino acids, γ -enamino alcohols or β -enamino esters (Lubell *et al.*, 1991; Bartoli *et al.*, 1994; Cimarelli *et al.*, 1994; Cimarelli & Palmieri, 1996). Many synthetic methods have been developed for the preparation of these compounds (Greenhill, 1977; Michael *et al.*, 1999; Elassar & El-Khair, 2003). We synthesized a class of β -enamino compounds by reacting β -dicarbonyl compounds with amines in the presence of a catalytic amount of indium tribromide (Zhang *et al.* 2006). We report herein the crystal structure of the title compound (Fig.1).

In the title molecule, the dihydrofuranone ring is planar to within ± 0.012 (4) Å and it forms a dihedral angle of 42.8 (2)° with the benzene ring. The aminoethylidene group is coplanar with the dihydrofuranone ring. The methoxy group is slightly twisted away from the benzene ring, with a C7—O1—C4—C5 torsion angle of 5.9 (5)°. The C11—C12 bond length [1.561 (5) Å] is markedly longther than usual C—C bond length. The N1—C8 bond length [1.400 (4) Å] is slightly shorter than the N1—C1 [1.439 (4) Å] bond length, indicating a weak electron delocalization. An intramolecular N1—H1···O2 hydrogen bond generating an S(6) ring is observed.

In the crystal structure, intermolecular C6—H6···O2 hydrogen bonds create centrosymmetric hydrogen-bonded dimers (Fig.2).

Experimental

A mixture of the 2-acetylcyclobutanone (5 mmol), 4-methoxybenzenamine (5 mmol) and InBr₃ (0.05 mmol) was stirred at room temperature for 1 h. After completion of the reaction, the reaction mixture was diluted with H₂O (10 ml) and extracted with EtOAc (210 ml). The combined organic layers were dried, concentrated, purified by column chromatography on SiO₂ with ethyl acetate-cyclohexane (1:8). Pale yellow solid was obtained with a yield of 89% (m.p. 339–341 K). IR (neat):v 3526, 2976, 1683, 1628, 1513, 1475, 1228, 1114, 1029, 947, 822, 763 cm⁻¹; ¹H NMR(CDCl₃, 300 MHz): δ 1.91 (s, 3H), 2.89 (t, 2H), 4.02 (s, 3H), 4.34 (t, 2H), 6.84 (d, 1H), 6.99 (d, 1H), 9.77 (br s, 1H, NH). ¹³C NMR(CDCl₃, 75 MHz): δ 17.4, 26.4, 63.7, 65.2, 87.6, 114.8, 126.6, 131.8, 154.6, 156.8, 173.9. ESI-MS: 233(*M*+1)⁺. Analysis calculated for C₁₃H₁₅NO: C 66.94, H 6.48, N 6.00%; found: C 67.17, H 5.58, N 5.68%. Single crystals suitable for X-ray diffraction study were obtained from ethyl acetate-cyclohexane by slow evaporation at room temperature.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N-H = 0.86 Å, C-H = 0.93–0.97 Å, and $U_{iso}(H) = 1.5U_{eq}(CH_3)$ or $1.2U_{eq}(C,N)$. Each methyl group was allowed to rotate freely about its C—C bond.

Figures

Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The dashed line indicates a hydrogen bond.

Fig. 2. The crystal packing of the title compound, showing C—H…O hydrogen-bonded dimers.

(Z)-3-[1-(4-Methoxyanilino)ethylidene]-4,5-dihydrofuran-2(3H)-one

Crystal data	
C ₁₃ H ₁₅ NO ₃	$F_{000} = 992$
$M_r = 233.26$	$D_{\rm x} = 1.329 \text{ Mg m}^{-3}$ $D_{\rm m} = 1.329 \text{ Mg m}^{-3}$ $D_{\rm m}$ measured by not measured
Orthorhombic, Pbca	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 2424 reflections
a = 12.562 (9) Å	$\theta = 2.3 - 26.5^{\circ}$
b = 7.568 (5) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 24.531 (18) Å	T = 293 (2) K
$V = 2332 (3) \text{ Å}^3$	Block, yellow
Z = 8	$0.26 \times 0.20 \times 0.10 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	2051 independent reflections
Radiation source: fine-focus sealed tube	1409 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.051$
T = 293(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -6 \rightarrow 14$
$T_{\min} = 0.963, T_{\max} = 0.990$	$k = -6 \rightarrow 9$
8990 measured reflections	<i>l</i> = −29→27

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.064$	H-atom parameters constrained

$P(F^2) = 0.140$	$w = 1/[\sigma^2(F_0^2) + (0.0345P)^2 + 1.787P]$
$wR(F^2) = 0.140$	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.20	$(\Delta/\sigma)_{\text{max}} = 0.001$
2051 reflections	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
156 parameters	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

En anti an al		1:							1		18.	Ζ١
Fractional	atomic	coorainales	ana is	oiropic	or ec	juivaieni	isoirop	nc ais	piacemeni	parameters	(A)

	x	У	z	$U_{\rm iso}*/U_{\rm eq}$
01	0.60436 (17)	0.4248 (3)	0.28822 (9)	0.0584 (7)
O2	0.56144 (16)	0.3225 (3)	-0.03039 (9)	0.0577 (7)
03	0.67421 (17)	0.2671 (3)	-0.09776 (9)	0.0588 (7)
N1	0.66238 (18)	0.4237 (3)	0.06464 (10)	0.0458 (7)
H1	0.6053	0.4365	0.0457	0.055*
C1	0.6483 (2)	0.4258 (4)	0.12125 (12)	0.0359 (7)
C2	0.7161 (2)	0.3370 (4)	0.15658 (12)	0.0418 (7)
H2	0.7736	0.2740	0.1427	0.050*
C3	0.6988 (2)	0.3416 (4)	0.21161 (12)	0.0445 (8)
Н3	0.7454	0.2832	0.2349	0.053*
C4	0.6133 (2)	0.4313 (4)	0.23285 (12)	0.0397 (7)
C5	0.5438 (2)	0.5155 (4)	0.19836 (12)	0.0408 (7)
Н5	0.4845	0.5739	0.2122	0.049*
C6	0.5626 (2)	0.5127 (4)	0.14287 (12)	0.0402 (7)
Н6	0.5159	0.5712	0.1196	0.048*
C7	0.5122 (3)	0.4963 (5)	0.31207 (14)	0.0639 (10)
H7A	0.5103	0.6214	0.3058	0.096*
H7B	0.5129	0.4738	0.3506	0.096*
H7C	0.4504	0.4424	0.2961	0.096*
C8	0.7527 (2)	0.4043 (4)	0.03547 (11)	0.0379 (7)
C9	0.8577 (2)	0.4487 (4)	0.06065 (13)	0.0474 (8)
H9A	0.8960	0.3417	0.0683	0.071*
H9B	0.8464	0.5128	0.0939	0.071*
H9C	0.8983	0.5201	0.0358	0.071*
C10	0.7493 (2)	0.3554 (4)	-0.01772 (11)	0.0398 (7)

supplementary materials

C11	0.8409 (2)	0.3275 (5)	-0.05534 (12)	0.0511 (8)
H11A	0.8877	0.2350	-0.0421	0.061*
H11B	0.8816	0.4353	-0.0601	0.061*
C12	0.7864 (3)	0.2733 (5)	-0.10790 (14)	0.0625 (10)
H12A	0.8019	0.3582	-0.1365	0.075*
H12B	0.8118	0.1582	-0.1195	0.075*
C13	0.6529 (3)	0.3163 (4)	-0.04569 (12)	0.0450 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0501 (14)	0.0825 (18)	0.0428 (14)	0.0102 (13)	0.0055 (11)	0.0044 (12)
O2	0.0335 (12)	0.0875 (18)	0.0520 (14)	-0.0095 (12)	-0.0071 (10)	-0.0009 (12)
O3	0.0559 (14)	0.0769 (17)	0.0435 (13)	-0.0083 (13)	-0.0030 (11)	-0.0100 (11)
N1	0.0240 (13)	0.0681 (18)	0.0452 (16)	0.0017 (12)	-0.0050 (11)	-0.0001 (13)
C1	0.0293 (15)	0.0367 (16)	0.0416 (17)	-0.0034 (13)	-0.0038 (13)	-0.0004 (13)
C2	0.0341 (16)	0.0391 (17)	0.0522 (19)	0.0082 (14)	0.0008 (14)	-0.0047 (14)
C3	0.0389 (18)	0.0450 (19)	0.050 (2)	0.0052 (15)	-0.0065 (14)	0.0042 (15)
C4	0.0347 (16)	0.0399 (17)	0.0444 (19)	-0.0048 (14)	0.0002 (13)	0.0017 (13)
C5	0.0265 (15)	0.0430 (18)	0.0528 (19)	0.0057 (13)	0.0053 (14)	0.0017 (14)
C6	0.0262 (15)	0.0436 (18)	0.0510 (19)	0.0019 (13)	-0.0058 (13)	0.0071 (14)
C7	0.054 (2)	0.085 (3)	0.053 (2)	0.000 (2)	0.0131 (17)	-0.0049 (19)
C8	0.0307 (15)	0.0367 (16)	0.0463 (18)	0.0035 (13)	-0.0058 (14)	0.0018 (13)
C9	0.0352 (17)	0.055 (2)	0.052 (2)	-0.0022 (15)	-0.0074 (14)	-0.0030 (15)
C10	0.0354 (16)	0.0401 (17)	0.0438 (18)	-0.0025 (14)	0.0001 (14)	0.0017 (14)
C11	0.0454 (19)	0.054 (2)	0.054 (2)	0.0036 (16)	0.0042 (16)	-0.0014 (16)
C12	0.061 (2)	0.072 (3)	0.055 (2)	0.001 (2)	0.0083 (18)	-0.0076 (18)
C13	0.045 (2)	0.0480 (19)	0.0417 (19)	-0.0052 (16)	-0.0050 (15)	0.0015 (14)

Geometric parameters (Å, °)

O1—C4	1.364 (4)	С6—Н6	0.93
O1—C7	1.406 (4)	C7—H7A	0.96
O2—C13	1.209 (4)	С7—Н7В	0.96
O3—C13	1.357 (4)	C7—H7C	0.96
O3—C12	1.432 (4)	C8—C10	1.357 (4)
N1—C8	1.349 (4)	C8—C9	1.495 (4)
N1-C1	1.400 (4)	С9—Н9А	0.96
N1—H1	0.86	С9—Н9В	0.96
C1—C6	1.368 (4)	С9—Н9С	0.96
C1—C2	1.389 (4)	C10—C13	1.424 (4)
C2—C3	1.368 (4)	C10—C11	1.490 (4)
С2—Н2	0.93	C11—C12	1.516 (4)
C3—C4	1.374 (4)	C11—H11A	0.97
С3—Н3	0.93	C11—H11B	0.97
C4—C5	1.372 (4)	C12—H12A	0.97
C5—C6	1.382 (4)	C12—H12B	0.97
С5—Н5	0.93		

C4—O1—C7	117.9 (3)	H7B—C7—H7C	109.5
C13—O3—C12	110.4 (2)	N1—C8—C10	120.9 (3)
C8—N1—C1	129.3 (2)	N1—C8—C9	119.9 (3)
C8—N1—H1	115.3	C10—C8—C9	119.1 (3)
C1—N1—H1	115.3	С8—С9—Н9А	109.5
C6—C1—C2	118.2 (3)	С8—С9—Н9В	109.5
C6—C1—N1	119.3 (3)	Н9А—С9—Н9В	109.5
C2-C1-N1	122.4 (3)	С8—С9—Н9С	109.5
C3—C2—C1	120.4 (3)	Н9А—С9—Н9С	109.5
С3—С2—Н2	119.8	Н9В—С9—Н9С	109.5
C1—C2—H2	119.8	C8—C10—C13	123.1 (3)
C2—C3—C4	120.8 (3)	C8—C10—C11	127.6 (3)
С2—С3—Н3	119.6	C13—C10—C11	109.2 (3)
С4—С3—Н3	119.6	C10-C11-C12	102.5 (3)
O1—C4—C5	125.3 (3)	C10-C11-H11A	111.3
O1—C4—C3	115.1 (3)	C12-C11-H11A	111.3
C5—C4—C3	119.5 (3)	C10-C11-H11B	111.3
C4—C5—C6	119.4 (3)	C12—C11—H11B	111.3
С4—С5—Н5	120.3	H11A—C11—H11B	109.2
С6—С5—Н5	120.3	O3—C12—C11	107.8 (3)
C1—C6—C5	121.6 (3)	O3—C12—H12A	110.1
С1—С6—Н6	119.2	C11—C12—H12A	110.1
С5—С6—Н6	119.2	O3—C12—H12B	110.1
O1—C7—H7A	109.5	C11—C12—H12B	110.1
O1—C7—H7B	109.5	H12A—C12—H12B	108.5
H7A—C7—H7B	109.5	O2—C13—O3	119.4 (3)
O1—C7—H7C	109.5	O2—C13—C10	130.6 (3)
H7A—C7—H7C	109.5	O3—C13—C10	110.0 (3)
C8—N1—C1—C6	154.5 (3)	C1—N1—C8—C9	-23.1 (5)
C8—N1—C1—C2	-28.0 (5)	N1-C8-C10-C13	-2.0 (4)
C6—C1—C2—C3	-2.0 (4)	C9—C8—C10—C13	-177.9 (3)
N1—C1—C2—C3	-179.5 (3)	N1-C8-C10-C11	-179.7 (3)
C1—C2—C3—C4	1.1 (5)	C9—C8—C10—C11	4.4 (5)
C7—O1—C4—C5	5.9 (5)	C8—C10—C11—C12	179.4 (3)
C7—O1—C4—C3	-172.8 (3)	C13-C10-C11-C12	1.4 (3)
C2—C3—C4—O1	179.5 (3)	C13—O3—C12—C11	1.9 (4)
C2—C3—C4—C5	0.8 (5)	C10-C11-C12-O3	-1.9 (4)
O1—C4—C5—C6	179.6 (3)	C12—O3—C13—O2	178.4 (3)
C3—C4—C5—C6	-1.8 (4)	C12—O3—C13—C10	-1.0 (4)
C2—C1—C6—C5	1.0 (4)	C8—C10—C13—O2	2.3 (5)
N1-C1-C6-C5	178.5 (3)	C11—C10—C13—O2	-179.6 (3)
C4—C5—C6—C1	0.9 (4)	C8—C10—C13—O3	-178.5 (3)
C1—N1—C8—C10	161.0 (3)	C11—C10—C13—O3	-0.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
N1—H1…O2	0.86	2.13	2.762 (4)	130
C6—H6···O2 ⁱ	0.93	2.53	3.405 (4)	158

Symmetry codes: (i) -x+1, -y+1, -z.

Fig. 1

Fig. 2